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Matchings and Matching Problems

A matching of a graph G = (V ,E) is a set of pairwise disjoint edges of
G. More formally, M ⊆ E is a matching of G if and only if {s, t}∩{u, v} =
∅ for each {s, t}, {u, v} ∈ M with {s, t} 6= {u, v}.
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The Maximum Weight Matching Problem
(MWMP) is to find a matching M∗ with the
maximum weight c(M∗) =

∑
e∈M∗ c(e)
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Applications

Assignment problems: green
vertices must be assigned to
blue vertices. Edges define
compatibility.
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Assignment problems: green
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blue vertices. Edges define
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Maximizing the cardinality or
an edge weight function.
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Applications

Combinatorics: the stable
sets of a line graph G are the
matchings of the root graph of
G.
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Applications

Chemistry: matchings can
represent structural proper-
ties of molecules.
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Bipartite graphs

A graph G = (V ,E) is bipartite if V
can be bipartitioned into V1 and V2
such that u ∈ V1 and v ∈ V2 for
each {u, v} ∈ E .
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Bipartite graphs

A graph G = (V ,E) is bipartite if V
can be bipartitioned into V1 and V2
such that u ∈ V1 and v ∈ V2 for
each {u, v} ∈ E .

Theorem A graph G = (V ,E) is bi-
partite if and only if it does not con-
tain odd cycles.
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Augmenting paths

Given a graph G = (V ,E) with a matching M
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MCMP on bipartite graphs

Theorem Let G = (V ,E) be a graph and M a matching. Then M has
maximal cardinality if and only if there are not M-augmenting paths.
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MCMP on bipartite graphs

Theorem Let G = (V ,E) be a graph and M a matching. Then M has
maximal cardinality if and only if there are not M-augmenting paths.

Algorithm MCM. Set M0 = ∅, i = 0

• while there exists a M i -augmenting path P i

• set M i+1 = M i4P i and i = i + 1
• M i has maximal cardinality
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Algorithm MWM. Set M0 = ∅, i = 0
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Theorem. At any iteration i of Algorithm MWM, M i is the maximum
weight matching of cardinality i .
Proof. By induction. True for M0. So, assume true for M i .
• Let N be a matching with |N| = |M i |+ 1
• Let Q be a M i -augmenting path in N4M i

• Then, c(N) = c(N4Q) + c(Q) ≤ c(M i) + c(P) = c(M i+1)
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MWMP on bipartite graphs

Let G = (V ,E) be a bipartite graph and c : E → R+ a weight function

Algorithm MWM. Set M0 = ∅, i = 0
• while there exists a M i -augmenting path of G
• set c i(e) = c(e) for e ∈ E \M i and c i(e) = −c(e) for e ∈ M i

• let P i the M i -augmenting path of maximum c i -length
• set M i+1 = M i4P i and i = i + 1

Theorem. At any iteration i of Algorithm MWM, M i is the maximum
weight matching of cardinality i .

Theorem. The Maximum Weight Matching Problem can be solved in
O(|V |(|E |+ |V |log|V |)) on bipartite graphs.
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