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@ An interesting application on fullerene graphs
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A matching of a graph G = (V, E) is a set of pairwise disjoint edges of
G. More formally, M C E is a matching of Gifand only if {s, t}n{u, v} =
() for each {s, t}, {u, v} € M with {s,t} # {u, v}.

Given a cost functionc: E — R,
The Maximum Weight Matching Problem

(MWMP) is to find a matching M* with the
maximum weight c(M*) =3~ . c(e)
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Assignment problems: green
vertices must be assigned to
blue vertices. Edges define
compatibility.

Maximizing the cardinality or
an edge weight function.




Applications

Combinatorics:  the stable
sets of a line graph G are the
matchings of the root graph of
G.




Applications

Chemistry:  matchings can
represent structural proper-
ties of molecules.
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Bipartite graphs

A graph G = (V, E) is bipartite if V
can be bipartitioned into V; and Vs
such that v € Vj and v € V, for
each {u,v} € E.

Theorem A graph G = (V, E) is bi-
partite if and only if it does not con-
tain odd cycles.
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Proof
= easy

<« Let M’ be a matching with [M’| > |M]|
e M AM is a collection of paths and cycles
e each of these cycles contains the same number of M edges and M
edges
e there exists a path P that is M'-alternating and M-alternating and
contains more edges of M'.
e P is M-augmenting.
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Algorithm MWM. Set M® =0, i =0
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e Let N be a matching with |[N| = |M'| + 1

e Let Q be a M'-augmenting path in NAM’

e Then, ¢(N) = ¢(NAQ) + ¢(Q) < ¢(M') + ¢(P) = ¢(M*1)
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Let G = (V, E) be a bipartite graph and ¢ : E — R, a weight function

Algorithm MWM. Set M® =0, i =0
e while there exists a M'-augmenting path of G
e set c'(e) = c(e) fore c E\ M and ¢/(e) = —c(e) fore ¢ M’
e let P’ the M'-augmenting path of maximum ¢’-length
eset M+ = M AP andi=i+1

Theorem. At any iteration i of Algorithm MWM, M’ is the maximum
weight matching of cardinality /.

Theorem. The Maximum Weight Matching Problem can be solved in
O(IVI(|E| + |V|log|V|)) on bipartite graphs.



